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Abstract. An exponent β which characterises non-equilibrium coarsening processes is
calculated in a deterministic solvable model of coarsening for a 1Dq-state system. We study
how the fraction of sitesP which have never changed their state, scale with the characteristic
domain length〈`〉. β is defined byP ∼ 〈`〉β−1. We propose a new model of coarsening
that prevents correlations from developing between domains thereby ensuring tractability and
an exact result for anyq.

1. Introduction

Domain coarsening occurs when a system is rapidly quenched from a high-temperature
disordered state to a low-temperature ordered state [1]. Domains of different equilibrium
ordered states form and grow with time. In an infinite system this competition between
different ordered domains goes on forever and the system thus remains far from equilibrium
at all times. The study of this time-dependent morphology of the growing domains has
been of major interest for the past few decades [1]. An important observation towards
characterizing these patterns is that they exhibit dynamic scaling at late times. This means
the domain structure at later times is statistically similar to those at earlier times except for
a global change of a single length scale [1]. This implies that at late times the system is
characterized by asingle length scale〈`(t)〉 and all time-dependent quantities exhibit scaling
in terms of this〈`(t)〉. The scaling hypothesis implies that the equal-time and two-time
correlation function can be written in scaling form as

C(r, t) = f (r/〈`〉) C(r, t, t ′) = (〈`〉′/〈`〉)λh(r/〈`〉).
These scaling forms are well supported by experiment [1].

It is believed that the exponents and scaling functions of a phase ordering system is
controlled by theT = 0 strong-coupling fixed point. This means that thermal noise is
irrelevant for late time scaling properties and it is sufficient to study the coarsening only at
T = 0. Theoretically there have been two main approaches to study the zero-temperature
coarsening process [1]. The first is to study discrete stochastic spin models such as the Ising
or Potts model evolving via Glauber dynamics [2] and the second is to study deterministic
models such as the noiseless Ginzburg–Landau (GL) equation for the coarse-grained order
parameter. In this case the GL equations are completely deterministic, the only randomness
being in the initial conditions. This is very different from the kinetic Ising models, which are
stochastic by definition (even atT = 0) and the average of any thermodynamic quantity is
not only over initial conditions (which is the case for theT = 0 GL equations) but also over
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the evolution histories. It is generally believed that ind > 2 the stochastic and deterministic
models belong to the same universality class, but in 1D the situation is quite different [4].
For example, for the 1D Ising model, with Glauber dynamics, atT = 0, evolved from a
random initial condition (quenching from highT ), the domain walls perform independent
random walks and annihilate upon meeting. The average domain size〈`〉 grows ast1/2. The
equal-time and the two-time spin–spin correlation functions can be exactly calculated [2, 3].
On the other hand for deterministic models the situation is different. For example, in the
1D GL model the domain walls interact via their exponential tails leading to a logarithmic
growth law [4]. This kind of a difference in time dependence suggests that exponents
defined with respect to〈`〉 may be more fundamental than those defined with respect tot .

The correlation function exponents and the dependence of the characteristic domain
length scale on time have been studied extensively [1–4]. However, since this gives no
information on the history of evolution of the system, the study of ‘persistence’ is important.
A simple way of characterizing the history of evolution of a system would be to look at,
say, the probability of a single spin in an Ising system not changing its spin up to a certain
time, in other words, its ‘persistence’ in clinging to its original state. By studying the
scaling behaviour with〈`〉 of P , the fraction of spins that have not changed their state, we
can define the exponentβ by P ∼ 〈`〉β−1. For the stochastic 1D Ising model with Glauber
dynamics an exact result forβ was found [5] to beβ = 0.25. The same exponent was
studied in the context of the 1D GL model whose late time dynamics can be mapped, as will
be explained later, to a deterministic coarsening algorithm which consists of the continual
removal of the smallest domains. In this case it was found [6] to be exactly 0.824. . . .

The same question can be asked in the context of theq-state Potts model. It turns out
that though the autocorrelation exponent and the growth law for the characteristic domain
length may be the same,β varies withq. An exact result [5] was recently found for the
1D stochastic case, which is an exact generalization of theq = 2 case, as

β(q) = 5

4
− 4

π2

[
cos−1

(
2− q√

2q

)]2

.

Noting the difference between the value ofβ in the stochastic and deterministic cases
for q = 2, it is only natural to ask howβ for the deterministic case differs from its
stochastic counterpart for generalq. However, forq > 2 deterministic models, correlations
develop between neighbouring domains as opposed to theq = 2 case [6]. This makes
it difficult to solve the deterministic case exactly forq > 2. Nevertheless, approximate
solutions have been obtained by ignoring these correlations [7, 8]. In this paper, we present
a modified version of the deterministic model in which no correlations develop between
domains which makes it exactly solvable. Our exact calculation shows that the exponentβ

depends continuously onq. Our model reduces to the true deterministic model forq = 2
but not for higher values ofq.

2. The model

The motivation behind our model is as follows. Let us consider theq = 2 Ising case first,
in the context of the time-dependent GL equation in 1D with no noise(T = 0). It turns out
[9, 4] that the late time dynamics of this model can be mapped to deterministic equations
describing the motions of a set of interacting domain walls (kinks in the wall profile). The
kinks interact via an exponential attractive interaction. This implies that in the limit when
the typical separation between domain walls is much larger than the width of a wall, the
shortest domains collapse instantly as compared with the longer ones. This means that
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the dynamics reduces to a deterministic model where at each timestep the shortest domain
is found and the spins inside it are flipped. Thus the system coarsens with the continual
‘removal’ of the shortest domains.

Now we can address the question as to what fraction of the spins have never flipped. It
is clear that once a domain has been removed the spins inside no longer contribute to the
fraction of spins that have never flipped. If we call those parts of the line where the spins
have flipped at least once ‘wet’, and those parts where the spins have never flipped ‘dry’,
then clearly, when a domain is removed, the portion of the line it occupied becomes ‘wet’.
So the question about the scaling of the fraction of spins that have never flipped can be
rephrased as: how does the density of dry regions scale with〈`〉? We define the exponent
β by saying that the dry region density scales as〈`〉β−1 or the dry part per domain goes as
〈`〉β .

A straightforward generalization of this procedure to theq-state Potts model can be
made. The domains form a random sequence constructed from theq available states, no
two consecutive domains being the same. Again the smallest domains will collapse and can
be removed if the states of the domains on either side are thesame, but if they aredifferent
the two walls will coalesce to form a new wall at the midpoint. However, this routine leads
to correlations developing between the domains. Instead we consider a model in which the
smallest domain is merged with the domain to its right if the states of the domains on either
side are different. This ensures, as we shall shortly explain, that no correlations develop
between domains. This leads to tractability and an exact result for anyq. In this paper we
examine how the dry region density scales with the characteristic domain length scale in
the context of this model.

At any time we have a sequence of domains constructed from theq available states, no
two consecutive ones being the same. The smallest domains are identified at each timestep.
If the domains to its left and right are the in thesamestate then it flips tothat state,
that is, the three domains merge to form a single large domain. Since domains remain
uncorrelated, as we shall show, the probability of this occurence is1

q−1. On the other

hand with a probabilityq−2
q−1 (in the event that the two domains are in different states), the

smallest domain flips to the state of its right-hand neighbour. In other words, it merges with
its right-hand neighbour leaving the other neighbour unaffected. In both cases the part of
the line previously occupied by the smallest domain becomes wet.

Now we consider the question of correlations. Suppose we chooseN intervals,
the number of distinct arrangements of these on a circle is(N − 1)!. Suppose we
deterministically coarsen this system by picking the smallest domain each time and removing
it, till we end up with one interval. Thus(N − 1)! distinct histories can be created. Now
we consider an alternate algorithm which consists of picking the smallest interval and then
picking two intervals at random and combining the three. We iterate this procedure until only
a single interval remains. This procedure also generates(N−1)! histories which are in one-
to-one correspondence with the histories generated by the deterministic algorithm described
above. This proves that no correlations develop between domains during coarsening by
merging with domains toboth the left and right.

Now consider coarsening theN intervals arranged on a circle by picking the smallest
interval each time and combining it with the interval to the right. This procedure generates
(N − 1)! histories. As before we consider an alternative procedure of picking the smallest
interval at each step and picking another interval at random and attatching it to the smallest
interval. This procedure also generates(N −1)! histories again proving that the coarsening
algorithm does not develop any correlations between the domains.
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So we have proved that the coarsening procedure we use in our model, which is
nothing but a combination of the two coarsening algorithms described above, does not
allow correlations to develop between intervals. As a result we can use the ‘picking at
random’ algorithm to computeβ.

3. Equation for β

Our calculations follow the method used by Brayet al [6] for the 1D Ising model case. We
start with random intervals on a line. Each intervalI is characterized by its lengthl(I ) and
by the length of its dry partd(I ). At each timestep the smallest domainImin is picked. As
explained before there are two possibilities.

(1). Two more intervalsI1, I2 are picked at random. The three domains are merged to
form a single large domainI . This occurs with probability 1

q−1. The total length and dry
parts ofI are given by

l(I ) = l(I1)+ l(Imin)+ l(I2) (1)

d(I ) = d(I1)+ d(I2). (2)

(2). Another intervalI1 is picked at random. The smallest domain is merged with it to
form a new domainI . This occurs with probabilityq−2

q−1. The length and dry part ofI are
given by

l(I ) = l(I1)+ l(Imin) (3)

d(I ) = d(I1). (4)

We assume that the lengths of intervals take only integer values and that the minimal length
in the system isi0. We also assume that there is a very large numberN of intervals. We
denote the number of intervals of lengthi by ni and also the average length of the dry part
of intervals of lengthi by di . We denote by primed symbols the values of these quantities
after all theni0 intervals of lengthi0 have been eliminated, so that the minimal length
becomesi0+ 1. The time evolution equations are then given by

N ′ = N − 2ni0

(
1

q − 1

)
− ni0

(
q − 2

q − 1

)
(5)

i.e.

N ′ = N − ni0
(

q

q − 1

)
. (6)

Similarly we have

n′i = ni
(

1−
(

q

q − 1

)
ni0

N

)
+ ni0

q − 1

i−2i0∑
j=i0

nj

N

ni−j−i0
N
+ q − 2

q − 1
ni0

(ni−i0
N

)
(7)

n′id
′
i = nidi

(
1−

(
q

q − 1

)
ni0

N

)
+ ni0

q − 1

i−2i0∑
j=i0

nj

N

ni−j−i0
N

(dj + di−j−i0)

+
(
q − 2

q − 1

)
ni0

N
(ni−i0di−i0). (8)

Note that these are valid forni0 � N which is valid wheni0 becomes large. We assume
that after many iterations i.e. wheni0 becomes large, a scaling regime is reached, where

ni = N

i0
f

(
i

i0

)
nidi = Niβ−1

0 g

(
i

i0

)
. (9)
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For largei0 we can treatx = i/i0 as a continuous variable. Then neglecting O(1/i20)
we have

n′i =
N ′

i0+ 1
f

(
i

i0+ 1

)
= N

i0

[
f (x)−

(
q

q − 1

)
f (1)

i0
f (x)− f (x)

i0
− x f

′(x)
i0

]
(10)

and

n′id
′
i = N ′(i0+ 1)β−1g

(
i

i0+ 1

)
= Niβ−1

0

[
g(x)−

(
q

q − 1

)
f (1)

i0
g(x)+ β − 1

i0
g(x)− x g

′(x)
i0

]
. (11)

Inserting these into the time evolution equations (7) and (8), and using the fact thatf and
g are independent ofi0 for large i0 we obtain

f (x)+ xf ′(x)+ θ(x − 3)
f (1)

q − 1

∫ x−2

1
f (y)f (x − y − 1) dy

+θ(x − 2)

(
q − 2

q − 1

)
f (1)f (x − 1) = 0 (12)

(1− β)g(x)+ xg′(x)+ 2θ(x − 3)
f (1)

q − 1

∫ x−2

1
g(y)f (x − y − 1) dy

+θ(x − 2)

(
q − 2

q − 1

)
f (1)g(x − 1) = 0. (13)

Now we introduce the Laplace tranforms of the functionsf andg

φ(p) =
∫ ∞

1
exp(−px)f (x) dx (14)

ψ(p) =
∫ ∞

1
exp(−px)g(x) dx. (15)

Taking Laplace transforms of equations (12) and (13) we obtain

pφ′(p) = f (1) exp(−p)
[(

1

q − 1

)
φ2(p)+

(
q − 2

q − 1

)
φ(p)− 1

]
(16)

pψ ′(p)+ βψ(p) = f (1) exp(−p)
[

2

(
1

q − 1

)
ψ(p)φ(p)+

(
q − 2

q − 1

)
ψ(p)− g(1)

f (1)

]
.

(17)

These are fairly simple first-order differential equations in one variable and may be solved
in a straightforward fashion to obtain the solutions

φ(p) = 1− exp(−h(p))
1+

(
1
q−1

)
exp(−h(p))

(18)

ψ(p) = g(1)
∫ ∞
p

[
1+ 1

q−1 exp(−h(x))
1+ 1

q−1 exp(−h(p))

]2
exp(h(x))

exp(h(p))

xβ−1

pβ
exp(−x) dx (19)

whereh(x) is given by

h(x) = f (1)
(

q

q − 1

)∫ ∞
x

e−t

t
dt. (20)

It may be noted that the constants of integration implied by the form of the solutions above,
are fixed by the requirement that bothφ andψ go to zero asp tends to infinity.
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It remains to fix the constantsf (1) andβ. For this we use the following expansion∫ ∞
p

e−x

x
dx = − ln(p)− γ −

∞∑
n=1

(−p)n
nn!

(21)

whereγ is Euler’s constant and has a valueγ = 0.577 215.... Using this with (18) and
(20) gives a smallp expansion forφ

φ(p) = 1−
(

1+ 1

q − 1

)
p

q

q−1f (1) exp

[
q

q − 1
f (1)γ

]
(1+O(p)). (22)

Comparing this with the smallp expansion from (14) which isφ(p) = 1− 〈x〉p + · · · we
obtainf (1) = q−1

q
and also the ratio of the mean domain length to the minimum length as

〈x〉 =
(

q

q−1

)
eγ .

The exponentβ can be determined in a similar fashion. We definer(p) by

r(p) = h(p)+ ln(p) = −γ −
∞∑
n=1

(−p)n
nn!

. (23)

Using this we can rewrite (19) as

ψ(p) = g(1)
∫ ∞
p

[
1+ x

q−1 exp(−r(x))
1+ p

q−1 exp(−r(p))

]2
exp(r(x))

exp(r(p))

xβ−2

pβ−1
exp(−x) dx. (24)

From this we may obtain the smallp form of ψ(p) as

g(1)

1− β +
g(1)

1− β eγ p1−βB(p, β) (25)

where

B(p, β) =
∫ ∞
p

xβ−1 d

dx

[
e−x

(
e
r(x)

2 + 1

q − 1
xe

−r(x)
2

)2
]

dx. (26)

It may be easily shown that

B(p, β) = B(0, β)+O(p1+β)+O(p2+β)+ · · · . (27)

Thus (25) reduces to

g(1)

1− β (1+ B(0, β)p
1−β +O(p)+O(p2)+ · · ·). (28)

We now compare this expansion to the direct expansion ofψ(p) obtained from (15), namely
ψ(p) = ∫∞1 dx g(x)(1− p(x) + O(p2)). If we require the functiong(x) to have a finite
first moment then we must haveB(0, β) = 0 i.e∫ ∞

0
xβ−1 d

dx

[
e−x

(
e
r(x)

2 + 1

q − 1
xe

−r(x)
2

)2
]

dx = 0. (29)

This condition determinesβ for us. For generalq the β can be determined by numerical
methods from the above condition (29). We have computedβ for sample values ofq (see
table 1). We have computedβ for q = 2 that agrees with Bray’s value [6] up to the five
decimal places. This is what one would expect because, as we mentioned before, our model
reduces to Bray’s model forq = 2. We also notice a monotonic decrease inβ asq increases
(see figure 1). This is also what one would physically expect if we look at the dry partper
domain which scales as〈`〉β . As we go to higher values ofq, coarsening proceeds almost
exclusively by the smallest domain merging withone nearest neighbour. This implies that,
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Table 1. β for variousq.

q β

2 0.824 92. . .
3 0.680 92. . .
4 0.581 78. . .
5 0.509 40. . .
7 0.409 99. . .

10 0.319 05. . .
50 0.083 21. . .

Figure 1.

in the scaling regime, the dry part per domain remains almostconstant leading to lower
and lower values ofβ, which indeed, is what we find. It can also be shown analytically by
considering the smallp form of ψ(p) for the q →∞ case thatβ = 0.

4. Conclusion

We have studied a deterministic model of coarsening for the zero-temperature dynamics of
a q-state system in 1D. This model does not allow correlations to develop between domains
thus rendering it exactly solvable. We have determined the persistence exponentβ exactly
for all q. For q = 2, we obtainβ = 0.824. . . in complete agreement with [6]. Asq
increases we find that the exponentβ decreases monotonically to 0.
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